
Los Alamos National Laboratory

Parallelization of Volume of Fluid Algorithms on Unstructured Meshes
Donald Kruse1, Alonso Navarro2, Justin Sunu2,3

Mentors: Neil Carlson4, Zach Jibben4

The development of advanced manufacturing techniques is a
key contributor to US industrial competitiveness and energy
efficiency. Conducting experiments on manufacturing
processes can be both time consuming and costly, which calls
for the use of computational simulation. Truchas is a software
suite written in modern Fortran that is used to simulate a
number of different manufacturing methods, such as metal
casting and additive manufacturing, with the goal of
obtaining crucial design information without performing
physical experiments.

A key and very time consuming component of Truchas deals
with the advection of interfaces separating immiscible media.
In order to optimize the advection segment of the code, our
research is focused on the implementation of high-level
OpenMP, vectorization, and code restructuring. These
changes are done on Pececillo, a mini-app of Truchas.

Motivation

1 Department of Mathematics and Statistics, University of New Mexico
2 College of Sciences, San Diego State University
3 Institute of Mathematical Sciences, Claremont Graduate University
4 Los Alamos National Laboratory

Our overall task is improving the speed of Pececillo using three different approaches:
high-level OpenMP (HLOMP), vectorization, and code restructuring.
• High-level OpenMP is implemented around computationally intensive routines.
• Vectorization is applied in regions where multiple data undergo the same math

operation (SIMD).
• Code restructuring consists of reorganizing the code to remove idling time, remove

repetitious tasks, remove excessive memory movement, and effectively sharing
variables.

Intel Haswell and Knights Landing (KNL) architecture systems were used in this study.

Goals

Challenges

References

Results and Conclusions

Acknowledgements

Implementations and Methods

[1] Y. Zamora, J. Schoonover, and R. W. Robey. Effective OpenMP for Extreme Scale Applications. Los
Alamos Technical Report LA-UR-17-23097, 2017.
[2] Z. Jibben. Incompressible Multimaterial Flow in Pececillo. Los Alamos Technical Report
LA-UR-24544, 2016.

Many thanks to our mentors: Bob Robey, Hai Ah Nam, Kris Garrett, Doug Jacobsen,
Neil Carlson, and Zach Jibben.

Support for this work was provided by the ASC Integrated Codes Program and the New
Mexico Consortium.

This work was carried out under the auspices of the National Nuclear Security
Administration of the us Department of Energy at Los Alamos National Laboratory
supported by Contract No. DE-AC52-06NA25396.

This work was performed using the Darwin and Trinitite system at Los Alamos National
Laboratory .

This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

• Auto-vectorization initiated with Intel compiler flags. Additional flags are used to
instruct the compiler to use AVX512 instructions and alignment of vectors.

• Many regions of the code were vectorized without any manipulation, however, there
were several regions that required restructuring based on the optimization report
produced from the Intel compiler.

• When restructuring code for optimization, there is a tradeoff between readability and
performance.

OpenMP
• High-level OpenMP requires minimizing the number of parallel regions, proper

variable scoping, allocation, deallocation, etc (opening and closing parallel regions
have costly overhead).

• Nested function and subroutine calls from object oriented Fortran.
• Barriers, master regions decrease threading efficiency.
• Alteration of scope when changing parallel region.

Vectorization
• Most efficient when applied to large loops with high arithmetic intensity.
• High modularity of the code causes most loops in code to be small, which suffer

from slowdown if vectorized.
• Compiler favors explicit code, but the level of explicitness can be unpredictable.
• Vectorization can cause slowdowns; needs to be checked on a case by case basis.
• Unstructured grids are not easily vectorizable due to indirect addressing.

Code restructuring
• Restructuring for optimization tends to make the code messy and difficult to read.
• Code is large and well written so there are no easy places to start.
• Goes against software design best practices.

OpenMP
• 10.66x speedup factor with KNL

with 272 threads.
• 1.5x speedup factor with

Haswell on 72 threads.
• Single parallel region even with

OOP code structure.
• Some barriers can’t be avoided

due to algorithm being heavily
dependent on prior
computations as well as
allocations/deallocations.

Material layout for the
Rayleigh Taylor
instability

Tests on Volume of Fluids (VOF) were run on Intel® Xeon® Processor E7-8880 v3
(Haswell) and Intel® Xeon Phi™ Processor 7250 (Knights Landing).

Parallel_Process_1 Barrier Parallel_Process_2 Barrier Parallel_Process_3

Data Dependent Algorithm

Well-aligned Array Access:Indirect Accessing:

Unrolling Loops:

Inlining Functions:

f(:) = 1
do i=1,n

f(i)=1
end do

f(j(:))
F_new(i) =
f(j(i))

0

64

128

192

a(1,…,8)

a(9,…,16)

a(17,…,24)

v1
v2
v3
v4
v5
v6
v7
v8

V
ecto

r R
egisterM

em
o

ry

do i=1,3
f(i)=0

end do

f(1)=0
f(2)=0
f(3)=0

do i=1,n
f(:)=function(i,…)

soln=soln+f(:)

end do

do i=1,n

f(:,i)=function(i,…)

end do

do i=1,n

soln=soln+f(:,i)

end do

Compute on Mesh
Cell

Process_1 for v = 1,#vertices

Process_2 for e=1,#edges

Process_3 for f=1,#faces

M
es

h

Sm
all lo

o
p

s

LA-UR-17-26768

• High-level OpenMP in the Navier-Stokes Solver.
• Further Optimizations around OMP DO regions and OMP BARRIERS.
• Investigate cache use on the KNL processor and the plateau after 10 threads (KNL).
• Adjust data structures for better vectorization.
• MPI + OpenMP is a natural next step for more parallization.
• Determine why scaling performance is poor on Haswell.

g(:) = gradient(f) call compute_gradient(f,g)

DO t=0,tf,dt

!$OMP PARALLEL

!parallel
computations

!$OMP END PARALLEL

END DO

!$OMP PARALLEL

DO t=0,tf,dt

!parallel computations

END DO

!$OMP END PARALLEL

Attempt to open and close a parallel region only once.
Start the parallel region low and broaden for separate
sections. Merge the parallel region when possible[1].

Reduce memory usage by changing array functions to
subroutines.

subroutine sub_1(f,g) ! Called in parallel region
real(r8), intent(inout) :: f,g
real(r8), save :: h(N)
!! Process done on h, all threads alter same h

end subroutine sub_1

Use save to force OMP SHARED properties upon
variables in parallel regions.

Finally optimize around OMP DO regions and barriers.
Attempt to reduce thread spinning.

Final HLOMP pattern
implemented in Pececillo

Explicit Loops:

Loop-carried dependencies:

• At max number of threads, KNL 17% faster than Haswell.
• Decent strong scaling occurs on the KNL up to about 10 threads only.

Vectorization
• Vectorization and code optimization gave significant speed-ups in the

arithmetically intense subroutines.

Future Work

Methods applied to
Gradient

Cumulative
speedup in
serial (KNL)

Explicit Loops and
inlining

2.03

+ Unrolling 3.31

+ Indirect
addressing

3.77

+ Pre-compute data 4.00

f=sum(a,b) f=a+b

!$OMP END DO
!$OMP END DO

NOWAIT

Possible improving cache use.

Methods applied to
Volume

Cumulative
speedup in
serial (HW)

Nested
subroutine

1.2

+ Inline function 1.5

+ Force
vectorization
with SIMD dir

1.65

Methods in
nested
subroutine

Cumulative
speedup in
this
subroutine

Indirect
addressing

1.2

+ Inline
functions

2.5

+ Force
vectorization
with SIMD dir

2.7

OpenMP patterns and code restructuring

Commonly used fixes for optimization

